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The entropy is written as a density series expansion involving a new 
kind of cumulant. These are defined as usual from the so-called reduced 
distribution functions. The first four terms of the series expansion of the 
entropy are shown to be identical to the known result. When density cor- 
rections are retained up to the uth order, the entropy is proved to obey 
approximately a conservation theorem. Finally, a discussion of non- 
equilibrium and equilibrium properties of the grand canonical ensemble is 
presented. 
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1. INTRODUCTION 

We consider a nonequ i l ib r ium system conta in ing  a stochastic n u m b e r  N of 

particles, i.e., we are considering a grand canonical  ensemble. Let 

PtN)/N! 

be the probabi l i ty  density for observing the following event:  (a) There are 

exactly N particles in the system; (b) the system phase-space coordinates are 

to be found  between the N-particle sets {N} and  {N} + d{N}. 
The probabi l i ty  that  there are exactly N particles in the system is obtained 

by integrat ion:  
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The Gibbs entropy S of the system is expressed in terms of the probability 
densities as (1,2) 

l fd{M}P(~ln[P(~ha~] (2) k - i S  = _ ~o - ~  " 

where k and h are the Boltzmann and Planck constants. 
It is well known that S, like all other equilibrium thermodynamic 

quantities, has a (number) density series expansion. Out of equilibrium, we 
also call the density series expansion a sum of functionals integrated over an 
increasing number of particle coordinates. 

The f functions, which are the one-, two-, three-, . . . .  particle distribution 
functions (p.d.f.), called in general reduced distribution functions (r.d.f.), are 
defined from P~M~ by 

N, f d{N} P(m = N~_,>~ ~ 1 f d{N} P(N+~ (3) 
NTU (N ~ ' M ) !  d{M} N! 

f~M~ is thus proportional to the Mth density power and the nonequilibrium S 
expansion is a density series expansion. Conversely, the P~M~ may be ex- 
pressed in terms off~M+m: 

( -  1)~ [ t%, 
N = o ~ jh~ + N~ 

d{N} (4) 

We call S (~) the value of S including the uth-order term, so that S (") is a 
functional of all {f(M~}, where M ~ u; S (a) is thus the Boltzmann entropy and 
S (~ is given by the contribution of the term containing h; by (2), (3), and (1), 
we get 

S (~ ~ 1 
= - M~=0 ~ . .  J d(1)J d{M - 1} P~M~[ln h3]M = - J  d(1)f(1)In h 3 k 

(L) = - NPN In h a =  - ( N )  l nh  a = - l n h  a<N> (5) 

where ( N )  is the mean number of particles contained in the system. 
Several authors have written S in terms of the r,d.f.---e.g., H. S. Green (3) 

for a closed system and Nettleton and M. S. Green C1) for open systems; their 
method is, however, rather complicated. For equilibrium systems, Ravech6 (~) 
provided an easier demonstration, using isothermal activity derivatives of 
potentials of mean force and involving two kinds of cumulants. We intend to 
simplify this method by introducing a unique generalized kind of cumulant 
and to extend it to nonequilibrium cases. Isothermal activity derivatives are 
replaced by z derivatives, z being a parameter (put equal to 1 at the end) 
which is introduced by multiplying each~z~) by zU: 

f({M}, z) = z~f~} 
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Moreover, if f ({M}, z) is introduced instead of fg}  in the right-hand side of 
(4), the left-hand side will also depend on z and this relation will be taken as 
a definition for P({M}, z). Another way of introducing z would be by multi- 
plying P~u} instead off,  M} by zM; this method is closer to Ravechr's since, at 
equilibrium, each P~)  contains the Mth power of the activity as a factor, 
but it is a little more tedious. We thus use the first method: This is presented 
in Section 2. 

In Section 3 the conservation theorem for the entropy to an arbitrary 
density approximation is proved; the relation between this result and the 
H-theorem will be analyzed in a forthcoming paper. 

A direct method for deriving fluctuation theorems, using the same tech- 
niques (generating function and multiple parametric derivative), is given in 
Section 4. 

. ENTROPY IN TERMS OF THE REDUCED 
DISTRIBUTION FUNCTIONS 

We have to eliminate In P~} from (2). We start with In(Pc~/fz~). By 
means of (4), it may be written, introducing the z parameter, 

in In [ ff(  + N) f((M}, z) = [~'--o N! .J f{M} d{N} (6) 

or expanding in a Taylor series 

In P({M}, z) 
f({M}, z) = .~>~ ~ C~M' (7) 

Where the C{~ M} are the cumulants of 

- f a{n} IU' f~M} (8) 

They may be found by taking multiple derivatives of the right-hand sides of 
(6) and (7); the result is (s) 

C~M, __- ~ , n ! ( _ l y _ l (  s _ 1)!l~=z,~, '~ 1 

where the prime indicates that the sum is over all solutions in nonnegative 
integers ofn = ~ ik~. Obviously, the {M} coordinates play only a parametric 
role and, whatever M, the transformations are similar; in particular they are 
similar to usual cumulant transformations obtained by putting {M} = 0. The 
entropy becomes [(2), (5), (7)]: 

S - l n  h 3<N> - M lnf~} 

- -  d ( M )  ~ = . 
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Defining 

( -1 )m-~  l n f ,  M} = ~o{,~> (11) 
{M} -= (ra} 

and applying (A.7) to each term of (10) yields 

S k = _ln[h3<~>]_ ~ I f  d{rn}totm}f{m} 
m = O  

( -  (12) 
m = 0 {M} ~_ {m} 

From identity (A.2) and the fact thatf~o} = 1 and ~o{o} = O, we obtain 

s 
k =  - f  d(1)f(1)lnf(1)h 3 L - - ~ . f  d{m)~~ 

~=~fd(s} f ( s - n }  K" ( 1,~-uF,- ,  (13) 
- -  ~ k - -  ) . . ' n  ~=z = d{n} nl (s n)! IM}=-{~-.~ 

The general term in the last term is also integrated over s particles since 
C~ M} contains r.d.f, integrated over (n}: In each I~M), an integral over (i} is 
hidden and ~,/k~ = n. 

In fact, we have 

C~ ~} = f d(n} "-.tn}r~ 

where the C {M} are Ursell functions defined by means off{~+~}/ftM} instead of {n} 

~ } .  Thus (13) is the density series expansion we wished. As an example, 
it can be easily checked that the S ~*~ contribution is identical to the one 
calculated by Netfleton and M. S. Green, C~) Yvon, {2) and Ravech6. t4) 

In this derivation, the generating function character of the method is 
more obvious than in Ravech6's paper and the main difference between the 
two results is that (13) is valid whether the system is in equilibrium or not. 

We can also easily obtain Green's result for dosed systems ~a) with specific 
hypothesis of  a canonical ensemble: There are exactly No particles in the 
system, i.e., all P~m are equal zero except P{N~}. Some consequences are: 
r.d.f, are defined only for M <~ N~: From (3) and (9), 

1 ! [ d (N, )P,  No~, M <. N,  
f t ~  = (g~ - M). J d{M} 

f~} = 0 M > Ne 
CI M~ =0,  n > N o -  M 

and in (10), n runs from 1 to No - M; thus the summation is different from 
zero onty i f M  < Arc. As the P~} factor is different from zero only i f M  = Nr 
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the last term in (10) vanishes and the canonical entropy is given by the two 
first terms of  the right-hand side of (13). 

. G I B B S  E N T R O P Y  C O N S E R V A T I O N  L A W  TO u t h  O R D E R  

As we are now interested in entropy derivatives, we drop the constant 
term In h a<N>, and write S ~"~ as 

m=O 

(14) 
s = l  �9 { M I = - { s - n }  

We prove the following theorem, expressing the entropy conservation to uth 
order: 

When contributions involving more than u particles are neglected, the 
time derivative of S <~) is zero. 

As OtPr is simpler to handle (Liouville's theorem) than Otfu~ (BBGKY 
equations), we shall express S ~"~ in terms of P{M} in order to prove this 
theorem. Using (A.1) and (11), we obtain 

S(U) u I 1) m-M" lnf~M,)]f~rn) ""-~" = --~o-~..f d{m}[~M~_lm(-- 

(--1)" n-T- (15) 

In the last term, the upper bound u - 1 for rn could as well be u, since, if 
m = u, the upper bound for n is zero and the summation over n disappears. 
Here we have to go back to the P~M~ formulation: By (A.5), we find 

1 
-~o-~. .  f d{M} P{MI mi~{t~, {M,}~=_{m (--1)m-1~" ln f M'} 

1 
- -  m~=O M = . + I ,  ~ (d{M}P{M'(M't~=_{m}(--1)m-M'lnfM'I(M--m) !rn' 

c~M'~ 
m = O  M +1 {M'}_= (rnI n = l  

M = 0 " {m} -= {M} {M'} ~ {rnI 

C~M') + - - - ,  C~ M'~ (16) 
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We replace the second term in the bracket by its value drawn from (7); the 
InfM.~ contribution will cancel the first term in (16), while by (A.6), the contri- 
bution of In P~.~ yields 

(17) 

whose time derivative, according to Liouville's equation, vanishes identi- 
cally. 

As time derivatives of integrals involving more than u particles may not 
involve less than u + 1 particles, the time derivative of S <~) gives rise only to 
higher order density terms: All contributions involving less than u + 1 
particles vanish identically. This proves the theorem. 

If these higher order terms involving f~§ (and correlation functions 
of the same order) are not negligible, S ~+1) may be considered first: This 
expression is now a functional o f f ,  + ~ and its time derivative will give rise 
to higher order r.d.f, and perhaps could be neglected. 

The theorem is thus an approximation in the sense that higher order 
correlation functions must always be neglected, except for u = oo (or u = Arc 
for a canonical ensemble), in which case S ~) becomes the exact Gibbs 
entropy and the theorem becomes the usual Gibbs entropy conservation 
law. 

4. OTHER PROPERTIES OF EQUILIBRIUM AND 
NONEQUIL IBRIUM GENERATING FUNCTIONS USING 
MULTIPLE PARAMETRIC  DIFFERENTIATION 

We collect here two kinds of expressions which relate nonequilibrium 
and equilibrium thermodynamic quantities, either directly to r.d.f, or by 
means of cumulants. 

When only E, the grand canonical partition function, or its nonequilib- 
rium equivalent, is needed, various methods can be used: 

1. Functional expansion3 6~ 
2. Statistical arguments to find out the probability Po that the system 

is empty3 7~ 
3. Generating functions and multiple parametric derivatives. ~8~ 

When E derivatives are needed, only the last method is of any use; an 
improved version, making apparent the connection with nonequilibrium 
expressions, is presented here. 

Finally, more direct methods are indicated. 
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In order to prove the following general identity involving a general 
generating function 

6N j " d(N} P{N} 
N=,~ d{n} N! 

+ ( ~ -  l y f d { l }  r l] J d@ J~t' + ~ ,~1 (6 - 1)' t" d{U} P~r, (18) 

we only have to show that, for each M, the Mth 6 derivatives of both sides 
evaluated for f = 1 are equal. When M < n, we get an identity and when 
M 1> n, we again find (3). 

Conversely, the right-hand side of (18) can be obtained from (3) by 
decomposing 6 into 1 + ($ - 1). 

Equating the M'th derivatives of both sides for M >t n and 6 = 0 leads 
to the following inversion formula: 

M!j(d{M}P'M~d-~ ~ = ~=~a~ ~=(- ly-Ul! M---~.t/! J d ~  J'~ ]" d(t}r (19) 

which yields the usual inversion formula (4) if {n} -= {M}. When n = 0, 
(18) reduces (1) to the useful generating function ~v 

~NPN= ~ (6-1)'~fd{l}f,~ (20) 
N = O  / = 0  

An equivalent expression is found by taking the logarithm of both sides and 
recalling that a logarithm of a series generates an ordinary cumulant (C~ ~ 
expansion (6) and (7). Those relations differentiated l times with respect to 
6 yield two relations, which become the classical fluctuation theorems when 
equilibrium ensembles are considered<Sq 

06_._~ ~Np>~ = d{ l }  f{z~ (21) 
N=O ~=I 

06 ---q In 6NPN r 

A shorter method consists in integrating (3) over {M}: 

= = (23) d{M}f~m : a{N} N! (N --- }14)! ~ _ 6"P~v r 

Equation (22) can also be derived from (23): Applying the composite function 
multiple derivation (5) to the left-hand side of (22) for ~: = 1 and using (23) 
and (9), we obtain the right-hand side of (22). 
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The two nonequilibrium relations leading to formulas giving ~ at 
equilibrium are found from (20) and the cumulant definitions (6) and (7): 

~.-1 = Po = ( -  1)' ~. d{l}f~) (24) 
/ = 0  

and 
o o  l 

[ ( -  1) o] (25) Z-1 = P0 = exp[,__Z,1 ---~.l- w, j 

More directly, (24) and thus (25) come from the usual inversion relation (4). 
Relation (25) is especially useful if we need an expression giving the 

pressure (In E)//3V in terms of  r.d.f. Here again, cumulants appear: This is a 
direct consequence of  the logarithmic form of the definition of the thermo- 
dynamic quantities considered (entropy and pressure). 

From a mathematical point of  view, we can explain why the generating 
function method is so widely used here: This is a very powerful method when 
two different series expansions may be found to be related to each other 
by means of  a simple function; this may be a definition [e.g., (6) and (7)] or 
a consequence of it [18]. Multiple derivatives then yield the links between the 
coefficients of  the two series (C~ ~ and I~ ~ or f~Mr and P ~ ) .  

The right-hand sides of (6) and (7) also provide us a generating function, 
one relating C~ M~ and I~ ~a~ to each other. We can thus say that this method 
allowed us essentially to write down explicit expansions, in terms of reduced 
distribution functions, involving an increasing number of  particles, for two 
quantities which reduce, at equilibrium, to the usual important quantities 
having a density series expansion: the entropy and the grand canonical 
partition function. 

A P P E N D I X  A 

From the following obvious identity, resulting from a change of sum- 
mation index 

~ - - d  ~ - - m  I / .  $ 

2 ~-, f(m'n)= 2 2 f ( s - n ' n )  (A.1) 
r a = 0  ~ = d  ~ = d  t t = d  

we find the particular case 

f(m, n) = s - n, n) (A.2) 
r a = 0  " a = l  8 ~ i  = 

We also need the following identity: 

~ + - (1.3) 
m=O M=u+l M=O m=O m~O M=m 
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which we prove by adding ~ =  0 ~+--~ + 1 to the obvious one 

- (A.4) 
M = 0  m = 0  h i = 0  M = m  

In order to prove it, we now consider the left-hand side of the following 
relation: 

l fd{m}fm,~w.,, (A.5) 
= m = 0  ~ "  

where X,,.)) is a functional depending of the coordinates of the group of m 

particles. Since the (M)  sets involving m particles give the same contribution 

to the integral, the left-hand side is 

( ~ ~ + ~ m~=ol fd{m)( fd{M} 1 )  1 

which, together with (A.3) and (3), yields the right hand side of (A.5). 
A particular case is obtained by choosing u = oo and 

~<<~, = ~. ( -  1 ) : - u ' / ~ : , ~  
{M'};~'_ {m) 

It is easy to show that the inversion formula is 

l{M'} = ~ ~((ra)) 
{m} -r ( M ' }  

and the following identity holds: 

~ l,M,)(--I) m-M' ==- I,M) (A.6) 
{m} _ {M)  { M ' )  -= {m} 

so that (A.5) becomes 

(A.7) 
= 0 m = o {M'} ~ {m} 
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